If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10x-53=0
a = 3; b = 10; c = -53;
Δ = b2-4ac
Δ = 102-4·3·(-53)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{46}}{2*3}=\frac{-10-4\sqrt{46}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{46}}{2*3}=\frac{-10+4\sqrt{46}}{6} $
| 16.8=1.4p | | 7(w+7)-2w=19 | | 15b+5=5 | | 1/4p+5/8p=5 | | 8(x+2)-6=3x+5(1+x) | | -7m+8=53 | | 25x+22=4(5x+4)+5x+6 | | -51=-5k-6 | | 9y2+30y+25=0 | | 7(x-6)+3x=38 | | 9a=5a+-18 | | 2/3n-4=1/4+n | | 36*(x+7)=(x+28) | | 6x-48+9x=180 | | 4+2(3w-3)=-4(2w-3)+4w | | 4j+6=34 | | 1-10=-3w-9w+9w | | 9(x-4)/6=3(x+5)/11 | | 12=-2v+4(v+5) | | 22=3h-5 | | -6+2x=2+4x | | -5(x+1)=x-3+2(4x+7) | | 4(x-1)/6=2(x+3)/7 | | 1/2x=13/15 | | -24x^2+12x+72=0 | | 2-5x=-6x+4 | | 8x+6-2x-4=4x+8 | | 6(x+3)+x=7x9+9 | | 9(t-3)+3t=4(3t+3)-11 | | 3(x-2)-4=2(2x+1) | | 6(x+3)x=6x+3+15 | | -1.7x=4(x+2.14) |